Scott Bailey

Scott Bailey

Currently, my laboratory focuses on the CRISPR-Cas system, a RNA-based adaptive immune system found in bacteria that protects against invasion by viruses and plasmids. Mechanistic studies of the CRISPR-Cas system is contributing to ongoing efforts aimed at exploiting this system to both protect domesticated bacteria (such as those used in food and pharmaceutical production) and combat human pathogens and the spread of antibiotic resistance. Moreover, RNA-guided nucleases from the CRISPR-Cas system are currently being adapted for genome editing and regulation strategies in a wide variety of organisms, including humans. Indeed, the potential of the CRISPR-Cas toolkit is just being realized and studies centered on understanding how the CRISPR-Cas systems function represents an important need. To this end, my laboratory has provided structural and mechanistic insight into how CRISPR-Cas systems identify and destroy their DNA targets. 


James M. Berger

James M. Berger

We seek to understand the molecular mechanisms of macromolecular assemblies that organize, express, and preserve the cell’s genetic information. We are particularly interested in developing kinetically accurate, atomic-resolution depictions of the dynamic assemblies that control DNA replication, gene regulation, and chromosome superstructure, and in exploiting this knowledge for chemotherapeutic development.


Philip A. Cole

Philip A. Cole

Chemical and biochemical approaches in the study of signal transduction, gene regulation, and metabolismChemical and biochemical approaches in the study of signal transduction, gene regulation, and metabolism


John Groopman

John Groopman

The research in my program involves the development and application of molecular biomarkers of exposure, dose, and effect from environmental carcinogens. The environmental carcinogens studied include agents that are naturally occurring in the diet as well as those produced as a result of cooking practices. A major emphasis of the research has been in the elucidation of the role of aflatoxins, a common contaminate of the food supply, in the induction of liver cancer in high-risk populations living in Asia and Africa. This work has led to the identification of a very strong chemical-viral interaction between aflatoxin and the human hepatitis B virus in the induction of liver cancer. These biomarkers have also been used in many collaborative molecular epidemiology studies of liver cancer risk and recently employed to assess the efficacy of a number of chemopreventive agents in trials in high-risk aflatoxin-hepatitis B virus exposed populations. This research is now being extended to develop genetic biomarkers of p53 mutations and viral alterations in human samples as early detection of disease biomarkers using a novel mass spectroscopy based method for genotyping developed in the laboratory. Thus, the research in our laboratory focuses on the translation of mechanistic research to public health based prevention strategies.


Jennifer Kavran

Jennifer Kavran

My laboratory aims to understand the molecular mechanisms regulating eukaryotic signaling of pathways. This knowledge provides the framework needed to interpret how alterations to a pathway, such as additional proteins, mutations to pathway components, or small molecules, modulate activity and could help guide targeted therapies. To achieve this, my lab employs a multi-prong approach that combines cell-based assays, biochemistry, enzymology, biophysics, and structural biology.


Marikki Laiho

Marikki Laiho

My laboratory aims to understand the molecular mechanisms regulating eukaryotic signaling of pathways. This knowledge provides the framework needed to interpret how alterations to a pathway, such as additional proteins, mutations to pathway components, or small molecules, modulate activity and could help guide targeted therapies. To achieve this, my lab employs a multi-prong approach that combines cell-based assays, biochemistry, enzymology, biophysics, and structural biology.


Anthony K. L. Leung

Anthony K. L. Leung

Laboratory of Gene Regulation

Gene regulation: Using multi-disciplinary and quantitative imaging, genomics and proteomics approaches, my lab uncovers novel roles of non-coding RNAs, non-membranous granules, and post-translational modifications.

Technology development: My lab develops proteomics and informatics tools to dissect the roles of a post-translational modification called ADP-ribosylation. 

Disease focus: My lab seeks to translate our basic scientific findings to therapy, e.g., PARP inhibitor in cancers and Chikungunya viral infection.


Jun O. Liu

Jun O. Liu

Our primary research interest lies at the interface between chemistry, biology, and medicine. We employ high-throughput screening to identify modulators of various cellular processes and pathways that have been implicated in human diseases from cancer to autoimmune diseases. Once biologically active inhibitors are identified, they will serve both as probes of the biological processes of interest and as leads for the development of new drugs for treating human diseases.

Among the biological processes of interest are cancer cell growth and apoptosis, angiogenesis, calcium-dependent signaling pathways, eukaryotic transcription and translation.


James Stivers

James Stivers

My laboratory is broadly interested in how dNTP pool levels and composition influence genetic stability, adaptive and innate immunity, inflammation, carcinogenesis, cellular senescence and aging. Current work in the lab focuses on two key aspects of dNTP metabolism. We are elucidating how the uniquely high concentration of dUTP in resting immune cells is used as a potent HIV-1 restriction factor in macrophages. We are also interested in the epigenetic effects of uracil when it is present in DNA.  Our long-range goal is to design novel small molecules that predictably alter the make up of nucleotide pools in cells for antiviral, anticancer, and anti-inflammatory therapeutic uses.