Chi Van Dang

Bloomberg Distinguished Professor of Cancer Medicine

Oncology Department, School of Medicine
Biochemistry and Molecular Biology Department, School of Public Health

RESEARCH OVERVIEW

The Dang lab contributed to defining the function of the MYC oncogene including establishing the first mechanistic link between MYC and cellular energy metabolism. This foundational concept that genetic alterations in cancers re-program fuel utilization by tumors provides a framework to develop novel strategies for cancer therapy. Current lab interests include seeking metabolic vulnerabilities of cancer and define how the circadian molecular clock influences cancer metabolism, immunity, tumorigenesis and therapeutic resistance. The molecular and metabolic basis for pancreatic cancer cell immune evasion is an ongoing area of investigation.

Cancer Biology | Cell BiologyCellular Stress and Cell SignalingChemical Biology and Proteomics | Genetics, Genomics and Gene Regulation Translational Research

Selected Publications:

Brooks R, Monzy J, Aaron B, Zhang X, Kossenkov A, Hayden J, Keeney F, Speicher DW, Zhang L, Dang CV. Circadian lncRNA ADIRF-AS1 binds PBAF and regulates renal clear cell tumorigenesis. Cell Reports, 2022.

Wolpaw AJ, Grossmann LD, Dessau JL, Dong MM, Aaron BJ, Brafford PA, Volgina D, Pascual-Pasto G, Rodriguez-Garcia A, Uzun Y, Arsenian-Henriksson M, Powell DJ Jr, Bosse KR, Kossenkov A, Tan K, Hogarty MD, Maris JM, Dang CV. Epigenetic state determines inflammatory sensing in neuroblastoma. PNAS, 2022.

Gouw AM, Margulis K, Liu NS, Raman SJ, Mancuso A, Toal GG, Tong L, Mosley A, Hsieh AL, Sullivan DK, Stine ZE, Altman BJ, Schulze A, Dang CV, Zare RN, Felsher DW. The MYC Oncogene Cooperates with Sterol-Regulated Element-Binding Protein to Regulate Lipogenesis Essential for Neoplastic Growth. Cell Metabolism, 2019.

Walton ZE, Patel CH, Brooks RC, Yu Y, Ibrahim-Hashim A, Riddle M, Porcu A, Jiang T, Ecker BL, Tameire F, Koumenis C, Weeraratna AT, Welsh DK, Gillies R, Alwine JC, Zhang L, Powell JD, Dang CV. Acid Suspends the Circadian Clock in Hypoxia through Inhibition of mTOR. Cell, 2018.

Altman BJ, Hsieh AL, Sengupta A, Krishnanaiah SY, Stine ZE, Walton ZE, Gouw AM, Venkataraman A, Li B, Goraksha-Hicks P, Diskin SJ, Bellovin DI, Simon MC, Rathmell JC, Lazar MA, Maris JM, Felsher DW, Hogenesch JB, Weljie AM, Dang CV. MYC Disrupts the Circadian Clock and Metabolism in Cancer Cells. Cell Metabolism, 2015.

Learn More

NCBI Bibliography | Faculty Profile | LinkedIn